集智

导语

2018年人工智能成为重塑世界格局的关键。谷歌BERT模型刷新多项自然语言处理纪录,DeepMind则用星际争霸II对局再次引爆机器智能无限可能。阿里与华为分别推出AI芯片,作为底层支撑的计算体系结构也将迈入黄金十年发展期。2019新春,中国人工智能将迎来全新的竞争挑战与生态建设契机。

图神经网络(Graph NN)是近来的一大研究热点,尤其是DeepMind提出的“Graph Networks”,号称有望让深度学习实现因果推理。但这篇论文晦涩难懂,复星集团首席AI科学家、大数医达创始人邓侃博士,在清华俞士纶教授团队对GNN综述清晰分类的基础上,解析DeepMind“图网络”的意义。

来源:新智元(AI_era

作者:邓侃

01

回顾2018年机器学习的进展,2018年6月DeepMind团队发表的论文“Relational inductive biases, deep learning, and graph networks”,是一篇重要的论文,引起业界热议。

集智俱乐部相关推文

图网络——悄然兴起的深度学习新浪潮 | AI&Society第八期回顾

随后,很多学者沿着他们的思路,继续研究,其中包括清华大学孙茂松团队。他们于2018年12月,发表了一篇综述,题目是“Graph neural networks: A review of methods and applications”

2019年1月,俞士纶教授团队,也写了一篇综述,这篇综述的覆盖面更全面,题目是“A Comprehensive Survey on Graph Neural Networks”。

集智

俞士纶教授团队综述GNN,来源:arxiv

DeepMind团队的这篇论文,引起业界这么热烈的关注,或许有三个原因:

  1. 声望:自从AlphaGo战胜李世乭以后,DeepMind享誉业界,成为机器学习业界的领军团队,DeepMind团队发表的论文,受到同行普遍关注;

  2. 开源:DeepMind团队发表论文[1]以后不久,就在Github上开源了他们开发的软件系统,项目名称叫Graph Nets[4];

  3. 主题:声望和开源,都很重要,但是并不是被业界热议的最主要的原因。最主要的原因是主题,DeepMind团队研究的主题是,如何用深度学习方法处理图谱。

02

图谱(Graph)由点(Node)和边(Edge)组成。

图谱是一个重要的数学模型,可以用来解决很多问题。

譬如我们把城市地铁线路图当成图谱,每个地铁站就是一个点,相邻的地铁站之间的连线就是边,输入起点到终点,我们可以通过图谱的计算,计算出从起点到终点,时间最短、换乘次数最少的行程路线。

又譬如Google和百度的搜索引擎,搜索引擎把世界上每个网站的每个网页,都当成图谱中的一个点。每个网页里,经常会有链接,引用其它网站的网页,每个链接都是图谱中的一条边。哪个网页被引用得越多,就说明这个网页越靠谱,于是,在搜索结果的排名也就越靠前。

图谱的操作,仍然有许多问题有待解决。

譬如输入几亿条滴滴司机行进的路线,每条行进路线是按时间排列的一连串(时间、GPS经纬度)数组。如何把几亿条行进路线,叠加在一起,构建城市地图?

不妨把地图也当成一个图谱,每个交叉路口,都是一个点,连接相邻的两个交叉路口,是一条边。

貌似很简单,但是细节很麻烦。

举个例子,交叉路口有很多形式,不仅有十字路口,还有五角场、六道口,还有环形道立交桥——如何从多条路径中,确定交叉路口的中心位置?

集智

日本大阪天保山立交桥,你能确定这座立交桥的中心位置吗?

03

应用深度学习来处理图谱,能够扩大我们对图谱的处理能力。

深度学习在图像和文本的处理方面,已经取得了巨大的成功。如何扩大深度学习的成果,使之应用于图谱处理?

图像由横平竖直的像素矩阵组成。如果换一个角度,把每个像素视为图谱中的一个点,每个像素点与它周边的8个相邻像素之间都有边,而且每条边都等长。通过这个视角,重新审视图像,图像是广义图谱的一个特例。

处理图像的诸多深度学习手段,都可以改头换面,应用于广义的图谱,譬如convolution、residual、dropout、pooling、attention、encoder-decoder等等。这就是深度学习图谱处理的最初想法,很朴实很简单。

虽然最初想法很简单,但是深入到细节,各种挑战层出不穷。每种挑战,都意味着更强大的技术能力,都孕育着更有潜力的应用场景。

深度学习图谱处理这个研究方向,业界没有统一的称谓。

强调图谱的数学属性的团队,把这个研究方向命名为Geometric Deep Learning。孙茂松团队和俞士纶团队,强调神经网络在图谱处理中的重要性,强调思想来源,他们把这个方向命名为Graph Neural Networks。DeepMind团队却反对绑定特定技术手段,他们使用更抽象的名称,Graph Networks。

命名不那么重要,但是用哪种方法去梳理这个领域的诸多进展,却很重要。把各个学派的目标定位和技术方法,梳理清楚,有利于加强同行之间的相互理解,有利于促进同行之间的未来合作。

04

俞士纶团队把深度学习图谱处理的诸多进展,梳理成5个子方向,非常清晰好懂。

集智

俞士纶团队把深度学习图谱处理梳理成5个子方向,来源:论文 A Comprehensive Survey on Graph Neural Networks

  1. Graph Convolution Networks

  2. Graph Attention Networks

  3. Graph Embedding

  4. Graph Generative Networks

  5. Graph Spatial-temporal Networks

先说Graph Convolution Networks (GCNs)。

集智

GCN 类别汇总,来源:论文 A Comprehensive Survey on Graph Neural Networks

GCN把CNN诸般武器,应用于广义图谱。CNN主要分为四个任务,

  1. 点与点之间的融合。在图像领域,点与点之间的融合主要通过卷积技术(convolution)来实现。在广义图谱里,点与点之间的关系,用边来表达。所以,在广义图谱里,点点融合,有比卷积更强大的办法。Messsage passing [5]就是一种更强大的办法。

  2. 分层抽象。CNN使用convolution的办法,从原始像素矩阵中,逐层提炼出更精炼更抽象的特征。更高层的点,不再是孤立的点,而是融合了相邻区域中其它点的属性。融合邻点的办法,也可以应用于广义图谱中。

  3. 特征提炼。CNN使用pooling等手段,从相邻原始像素中,提炼边缘。从相邻边缘中,提炼实体轮廓。从相邻实体中,提炼更高层更抽象的实体。CNN通常把convolution和pooling交替使用,构建结构更复杂,功能更强大的神经网络。对于广义图谱,也可以融汇Messsage passing和Pooling,构建多层图谱。

  4. 输出层。CNN通常使用softmax等手段,对整张图像进行分类,识别图谱的语义内涵。对于广义图谱来说,输出的结果更多样,不仅可以对于整个图谱,输出分类等等结果。而且也可以预测图谱中某个特定的点的值,也可以预测某条边的值。

集智

GCN 和Graph Attention Networks 的区别来源:论文 A Comprehensive Survey on Graph Neural Networks

Graph Attention Networks要解决的问题,与 GCN类似,区别在于点点融合、多层抽象的方法。

Graph Convolution Networks使用卷积方式,实现点点融合和分层抽象。Convolution卷积方式仅仅适用于融合相邻的点,而attention聚焦方式却不限于相邻的点,每个点可以融合整个图谱中所有其它点,不管是否相邻,是否融合如何融合,取决于点与点之间的关联强弱。

Attention能力更强大,但是对于算力的要求更高,因为需要计算整个图谱中任意两个点之间的关联强弱。所以Graph Attention Networks研究的重点,是如何降低计算成本,或者通过并行计算,提高计算效率。

05

Graph Embedding要解决的问题,是给图谱中每个点每条边,赋予一个数值张量。图像不存在这个问题,因为像素天生是数值张量。但是,文本由文字词汇语句段落构成,需要把文字词汇,转化成数值张量,才能使用深度学习的诸多算法。

如果把文本中的每个文字或词汇,当成图谱中的一个点,同时把词与词之间的语法语义关系,当成图谱中的一条边,那么语句和段落,就等同于行走在文本图谱中的一条行进路径。

如果能够给每个文字和词汇,都赋予一个贴切的数值张量,那么语句和段落对应的行进路径,多半是最短路径。

有多种实现Graph Embedding的办法,其中效果比较好的办法是Autoencoder。用GCN的办法,把图谱的点和边转换成数值张量,这个过程称为编码(encoding),然后通过计算点与点之间的距离,把数值张量集合,反转为图谱,这个过程称为解码(decoding)。通过不断地调参,让解码得到的图谱,越来越趋近于原始图谱,这个过程称为训练。

Graph Embedding给图谱中的每个点每条边,赋予贴切的数值张量,但是它不解决图谱的结构问题。

如果输入大量的图谱行进路径,如何从这些行进路径中,识别哪些点与哪些点之间有连边?难度更大的问题是,如果没有行进路径,输入的训练数据是图谱的局部,以及与之对应的图谱的特性,如何把局部拼接成图谱全貌?这些问题是Graph Generative Networks要解决的问题。

Graph Generative Networks比较有潜力的实现方法,是使用Generative Adversarial Networks (GAN)。

GAN由生成器(generator)和辨别器(discriminator)两部分构成:1.从训练数据中,譬如海量行进路径,生成器猜测数据背后的图谱应该长什么样;2.用生成出来的图谱,伪造一批行进路径;3.从大量伪造的路径和真实的路径中,挑选几条路径,让辨别器识别哪几条路径是伪造的。

如果辨别器傻傻分不清谁是伪造路径,谁是真实路径,说明生成器生成出的图谱,很接近于真实图谱。

集智

GCN 以外的其他 4 种图谱神经网络,来源:论文 A Comprehensive Survey on Graph Neural Networks

06

以上我们讨论了针对静态图谱的若干问题,但是图谱有时候是动态的,譬如地图中表现的道路是静态的,但是路况是动态的。

如何预测春节期间,北京天安门附近的交通拥堵情况?解决这个问题,不仅要考虑空间spatial的因素,譬如天安门周边的道路结构,也要考虑时间temporal的因素,譬如往年春节期间该地区交通拥堵情况。这就是Graph Spatial-temporal Networks要解决的问题之一。

Graph Spatial-temporal Networks还能解决其它问题,譬如输入一段踢球的视频,如何在每一帧图像中,识别足球的位置?这个问题的难点在于,在视频的某些帧中,足球有可能是看不见的,譬如被球员的腿遮挡了。

解决时间序列问题的通常思路,是RNN,包括LSTM和GRU等等。

DeepMind团队在RNN基础上,又添加了编码和解码(encoder-decoder)机制。

07

在DeepMind团队的这篇论文里[1],他们声称自己的工作,“part position paper, part review, and part unification”,既是提案,又是综述,又是融合。这话怎么理解?

集智

DeepMind联合谷歌大脑、MIT等机构27位作者发表重磅论文,提出“图网络”(Graph network),将端到端学习与归纳推理相结合,有望解决深度学习无法进行关系推理的问题。

前文说到,俞士纶团队把深度学习图谱处理的诸多进展,梳理成5个子方向:1) Graph Convolution Networks、2) Graph Attention Networks、3) Graph Embedding、4) Graph Generative Networks、5) Graph Spatial-temporal Networks。

DeepMind团队在5个子方向中着力解决后4个方向,分别是Graph Attention Networks、Graph Embedding、Graph Generative Networks和Graph Spatial-temporal Networks。他们把这四个方向的成果,“融合”成统一的框架,命名为Graph Networks。

在他们的论文中,对这个四个子方向沿途的诸多成果,做了“综述”,但是并没有综述Graph Convolution Networks方向的成果。然后他们从这四个子方向的诸多成果中,挑选出了他们认为最有潜力的方法,形成自己的“提案”,这就是他们开源的代码[4]。

集智

DeepMind在2018年10月开源的Graph Nets library,用于在TensorFlow中构建简单而强大的关系推理网络。来源:github.com/deepmind/graph_nets

虽然论文中,他们声称他们的提案解决了四个子方向的问题,但是查看他们开源的代码,发现其实他们着力解决的是后两个子方向,Graph Attention Networks和Graph Spatial-temporal Networks。

DeepMind的思路是这样的:首先,把[5]的message passing点点融合的机制,与[6]图谱全局的聚焦机制相结合,构建通用的graph block模块;其次,把LSTM要素融进encoder-decoder框架,构建时间序列机制;最后,把graph block模块融进encoder-decoder框架,形成Graph Spatial-temporal Networks通用系统。

08

为什么DeepMind的成果很重要?事关四件大事。

一、深度学习过程的解释

从原理上讲,深度学习譬如CNN的成果,来自于对图像的不断抽象。也就是,从原始的像素矩阵中,抽象出线段。从首尾相连的相邻线段中,抽象出实体的轮廓。从轮廓抽象出实体,从实体抽象出语义。

但是,如果窥探CNN每一层的中间结果,实际上很难明确,究竟是哪一层的哪些节点,抽象出了轮廓,也不知道哪一层的哪些节点,抽象出了实体。总而言之,CNN的网络结构是个迷,无法明确地解释网络结构隐藏的工作过程的细节。

无法解释工作过程的细节,也就谈不上人为干预。如果CNN出了问题,只好重新训练。但重新训练后的结果,是否能达到期待的效果,无法事先语料。往往按下葫芦浮起瓢,解决了这个缺陷,却引发了其它缺陷。

反过来说,如果能明确地搞清楚CNN工作过程的细节,就可以有针对性地调整个别层次的个别节点的参数,事先人为精准干预。

二、小样本学习

深度学习依赖训练数据,训练数据的规模通常很大,少则几万,多大几百万。从哪里收集这么多训练数据,需要组织多少人力去对训练数据进行标注,都是巨大挑战。

如果对深度学习的过程细节,有更清晰的了解,我们就可以改善卷积这种蛮力的做法,用更少的训练数据,训练更轻巧的深度学习模型。

卷积的过程,是蛮力的过程,它对相邻的点,无一遗漏地不分青红皂白地进行卷积处理。

如果我们对点与点之间的关联关系,有更明确的了解,就不需要对相邻的点,无一遗漏地不分青红皂白地进行卷积处理。只需要对有关联的点,进行卷积或者其它处理。

根据点与点之间的关联关系,构建出来的网络,就是广义图谱。广义图谱的结构,通常比CNN网络更加简单,所以,需要的训练数据量也更少。

三、迁移学习和推理

用当今的CNN,可以从大量图片中,识别某种实体,譬如猫。

但是,如果想给识别猫的CNN扩大能力,让它不仅能识别猫,还能识别狗,就需要额外的识别狗的训练数据。这是迁移学习的过程。

能不能不提供额外的识别狗的训练数据,而只是用规则这样的方式,告诉电脑猫与狗的区别,然后让电脑识别狗?这是推理的目标。

如果对深度学习过程有更精准的了解,就能把知识和规则,融进深度学习。

从广义范围说,深度学习和知识图谱,是机器学习阵营中诸多学派的两大主流学派。迄今为止,这两大学派隔岸叫阵,各有胜负。如何融合两大学派,取长补短,是困扰学界很久的难题。把深度学习延伸到图谱处理,给两大学派的融合,带来了希望。

四、空间和时间的融合,像素与语义的融合

视频处理,可以说是深度学习的最高境界。

  1. 视频处理融合了图像的空间分割,图像中实体的识别,实体对应的语义理解。

  2. 多帧静态图像串连在一起形成视频,实际上是时间序列。同一个实体,在不同帧中所处的位置,蕴含着实体的运动。运动的背后,是物理定律和语义关联。

  3. 如何从一段视频,总结出文本标题。或者反过来,如何根据一句文本标题,找到最贴切的视频。这是视频处理的经典任务,也是难度超大的任务。

参考文献

  1. Relational inductive biases, deep learning, and graph networks,https://arxiv.org/abs/1806.01261

  2. Graph neural networks: A review ofmethods and applications,https://arxiv.org/abs/1812.08434

  3. A Comprehensive Survey on Graph Neural Networks,https://arxiv.org/abs/1901.00596

  4. Graph nets,https://github.com/deepmind/graph_nets

  5. Neural message passing for quantum chemistry,https://arxiv.org/abs/1704.01212

  6. Non-local neural networks,https://arxiv.org/abs/1711.07971

编辑:王怡蔺

推荐阅读

图网络重磅综述:基于图的深度学习方法

前沿论文解读:图网络上的注意力流

DeepMind开源图网络库

图网络深度学习新浪潮 | AI&Society

加入集智,一起复杂!

推荐课程

集智

课程地址:

https://campus.swarma.org/gpac=381


集智

集智俱乐部QQ群|877391004

商务合作及投稿转载|swarma@swarma.org

搜索公众号:集智俱乐部

加入“没有围墙的研究所”

集智

让苹果砸得更猛烈些吧!

原文始发于微信公众号(集智俱乐部):集智