(1) Li, Z.;† Wang, S.;† Nattermann, U.;† Bera, A. K.; Borst, A. J.; et al. Accurate Computational Design of 3D Protein Crystals. Nat. Mater. 2023, accepted. Doi: https://doi.org/10.1101/2022.11.18.517014. († equal author contribution)
(2) Lutz, I. D.;† Wang, S.;† Norn, C.;† Courbet, A.; Borst, A. J.; et al. Top-down Design of Protein Architectures with Reinforcement Learning. Science 2023, 380 (6642), 266–273. https://doi.org/10.1126/science.adf6591.
(3) Watson, J. L.;† Juergens, D.;† Bennett, N. R.;† Trippe, B. L.;† Yim, J.;† et al. De Novo Design of Protein Structure and Function with RFdiffusion. Nature 2023, 620 (7976), 1089–1100. https://doi.org/10.1038/s41586-023-06415-8.
(4) Dauparas, J.; Anishchenko, I.; Bennett, N.; Bai, H.; Ragotte, R. J.; et al. Robust Deep Learning–Based Protein Sequence Design Using ProteinMPNN. Science 2022, 378 (6615), 49–56. https://doi.org/10.1126/science.add2187.
(5) Ennist, N.; Wang, S.; Kennedy. M. A.; Curti, M.; et al. ” De novo design of energy transfer proteins housing excitonically coupled chlorophyll special pairs,” Nat. Struct. Biol. 2023, Accepted. Doi: https://www.researchsquare.com/article/rs-2736786/v1
1. Wang, X., Alnabati, E., Aderinwale, T. W., Maddhuri Venkata Subramaniya, S. R., Terashi, G., & Kihara, D. (2021). Detecting protein and DNA/RNA structures in cryo-EM maps of intermediate resolution using deep learning. Nature Communications, 12(1), 2302.
2. Maddhuri Venkata Subramaniya, S. R., Terashi, G., & Kihara, D. (2019). Protein secondary structure detection in intermediate-resolution cryo-EM maps using deep learning. Nature Methods, 16(9), 911-917.
3. Terashi, G.*, Wang, X.*, Maddhuri Venkata Subramaniya, S. R., Tesmer, J. J., & Kihara, D. (2022). Residue-wise local quality estimation for protein models from cryo-EM maps. Nature Methods, 19(9), 1116-1125.
4. Tsukasa Nakamura, Xiao Wang, Genki Terashi, & Daisuke Kihara, DAQ-Score Database: assessment of map-model compatibility for protein structure models from cryo-EM maps, Nature Methods, 20: 775-776, (2023).
5. Xiao Wang, Genki Terashi & Daisuke Kihara, CryoREAD: De novo structure modeling for nucleic acids in cryo-EM maps using deep learning. Nature Methods (2023).
6. Genki Terashi, Xiao Wang, Devashish Prasad, Tsukasa Nakamura & Daisuke Kihara, Integrated Protocol of Protein Structure Modeling for Cryo-EM with Deep Learning and Structure Prediction. Nature Methods (2023).
7. Terashi, G., & Kihara, D. (2018). De novo main-chain modeling for EM maps using MAINMAST. Nature Communications, 9(1), 1618.
8. Han, X., Terashi, G., Christoffer, C., Chen, S., & Kihara, D. (2021). VESPER: global and local cryo-EM map alignment using local density vectors. Nature Communications, 12(1), 2090.