大语言模型2.0——从推断到自指丨周六直播·大模型2.0读书会第一期
导语
分享内容简介
分享内容简介
分享内容大纲
分享内容大纲
-
历史回顾
-
神经语言模型
-
词向量
-
预训练语言模型
-
规模法则(Scaling laws)与涌现能力
-
从训练到测试
-
上下文学习
-
思维链
-
推理能力边界
-
复杂度阈值
-
搜索与推断
-
自我学习
-
自我评估
-
思维树
-
AlphaGo
-
类AlphaZero树搜索
-
新的Scaling Law
-
Self-x AI
-
自我改进
-
自我一致性
-
自我对齐
-
自我精炼
-
自我反思
-
通向自我意识
主讲人介绍
主讲人介绍
张江,北京师范大学系统科学学院教授,集智俱乐部、集智学园创始人,集智科学研究中心理事长,曾任腾讯研究院、华为战略研究院等特聘顾问。主要研究领域包括因果涌现、复杂系统分析与建模、规模理论等。
主要涉及到的参考文献
主要涉及到的参考文献
• F.Sun et al.: Learning Word Representations by Jointly Modeling Syntagmatic and Paradigmatic Relations (slides)
http://www.bigdatalab.ac.cn/~lanyanyan/slides/2015/ACL2015-sun.pdf
• Mikolov, T., Chen, K., Corrado, G., & Dean, J. Efficient Estimation of Word Representations in Vector Space[C]//International Conference on Learning Representations. 2013.
https://arxiv.org/abs/1301.3781
• Qiu, R., Zhou, D., Qian, W., et al. Ask, and it shall be given: Turing completeness of prompting[R]. 2024.
https://arxiv.org/pdf/2411.01992
• Zhou, D., Zhang, S., Gheini, M., et al. Least-to-Most Prompting Enables Complex Reasoning in Large Language Models[J]. ArXiv, abs/2205.10625, 2022: n. pag.
https://arxiv.org/abs/2205.10625
• Pérez, J., Martinez, F., & Barcelo, P. On the Turing Completeness of Modern Neural Network Architectures[J]. ArXiv, abs/1901.03429, 2019: n. pag.
• Siegelmann, H. T., & Sontag, E. D. On the Computational Power of Neural Nets[J]. Journal of Computer and System Sciences, 1995, 50(1): 132–150.
http://binds.cs.umass.edu/papers/1992_Siegelmann_COLT.pdf
https://arxiv.org/abs/1901.03429
• Wei, J., Wang, X., Schuurmans, D., et al. Chain of Thought Prompting Elicits Reasoning in Large Language Models[J]. ArXiv, abs/2201.11903, 2022: n. pag.
https://arxiv.org/abs/2201.11903
• Chen, Q., Wu, X., Wang, Z., et al. Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought[J]. ArXiv, abs/2410.05695, 2024: n. pag.
https://arxiv.org/abs/2410.05695
• Kumar, T., Zhang, Y., & He, C. Scaling Laws for Precision[R]. 2024.
https://arxiv.org/abs/2411.04330
• Wu, Y., Ma, Z., & Li, B. Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference for Problem-Solving with Language Models[R]. 2024.
https://arxiv.org/abs/2408.00724
• Huang, J., Wang, X., Wei, J., et al. Large Language Models Can Self-Improve[J]. ArXiv, abs/2210.11610, 2022: n. pag.
https://arxiv.org/abs/2210.11610
• Wang, X., Wei, J., Schuurmans, D., et al. Self-Consistency Improves Chain of Thought Reasoning in Language Models[J]. ArXiv, abs/2203.11171, 2022: n. pag.
https://arxiv.org/abs/2203.11171
• Li, X., Wang, X., Gao, J., et al. Self-Alignment with Instruction Backtranslation[J]. ArXiv, abs/2308.06259, 2023: n. pag.
https://arxiv.org/abs/2308.06259
• Madaan, A., Touvron, H., Lample, G., et al. Self-Refine: Iterative Refinement with Self-Feedback[J]. ArXiv, abs/2303.17651, 2023: n. pag.
https://arxiv.org/pdf/2303.17651
• Shinn, N., Labash, A., & Ahn, S. Reflexion: language agents with verbal reinforcement learning[C]//Neural Information Processing Systems. 2023.
https://arxiv.org/pdf/2303.11366
• Tao, Z., Wang, X., & Wei, J. A Survey on Self-Evolution of Large Language Models[J]. ArXiv, abs/2404.14387, 2024: n. pag.
https://arxiv.org/pdf/2404.14387
直播信息
直播信息
时间:
2024年12月7日(本周六)晚上19:30-21:30
参与方式:
大模型2.0读书会启动
o1模型代表大语言模型融合学习与推理的新范式。集智俱乐部联合北京师范大学系统科学学院教授张江、Google DeepMind研究科学家冯熙栋、阿里巴巴强化学习研究员王维埙和中科院信工所张杰共同发起「大模型II:融合学习与推理的大模型新范式 」读书会,本次读书会将关注大模型推理范式的演进、基于搜索与蒙特卡洛树的推理优化、基于强化学习的大模型优化、思维链方法与内化机制、自我改进与推理验证。希望通过读书会探索o1具体实现的技术路径,帮助我们更好的理解机器推理和人工智能的本质。
从2024年12月7日开始,预计每周六进行一次,持续时间预计 6-8 周左右。欢迎感兴趣的朋友报名参加,激发更多的思维火花!
详情请见:大模型2.0读书会:融合学习与推理的大模型新范式!