元学习和图神经网络的结合:方法与应用 | arXiv速递

导语
今天给大家介绍的是一篇哥伦比亚大学数据科学院Debmalya发表的一篇文章。文章对目前新兴的元学习与图神经网络组合这个方向做出了详细的介绍。

黄靖鑫 | 作者
DrugAI | 来源

论文题目:
Meta-Learning with Graph Neural Networks: Methods and Applications
论文地址:
https://arxiv.org/abs/2103.00137
1. 元学习的背景
1. 元学习的背景
2. 元学习应用到图问题
3. 元学习结合GNN
4.未来的方向
作者举例了如交通预测、网络聚合、分子属性预测等新兴应用。同时,作者还阐述了这个领域在图结合优化,图挖掘问题,动态图几个方向的应用。可以说将元学习应用于GNN来解决特定的图任务是一个不断发展且令人兴奋的研究领域。
论文地址:arXiv:2103.00137[cs.LG]
[1] Zemin Liu, Wentao Zhang, Yuan Fang, Xinming Zhang, and Steven CH Hoi. “Towards locality-aware meta-learning of tail node embeddings on networks”. In: CIKM. 2020, pp. 975–984
[2] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. “Arnetminer: extraction and mining of academic social networks”. In: KDD. 2008.
[3] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schonauer, SVN Vishwanathan, Alex J Smola, and ¨Hans-Peter Kriegel. “Protein function prediction via graph kernels”. In: Bioinformatics 21 (2005),pp. i47–i56.
[4] Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng. “Meta-Gnn: On Few-Shot Node Classification in Graph Meta-Learning”. In: CIKM. 2019, pp. 2357–2360.
[5] Zemin Liu, Yuan Fang, Chenghao Liu, and Steven CH Hoi. “Relative and Absolute Location Embedding for Few-Shot Node Classification on Graph”. In: AAAI (2021).
[6] Mingyang Chen, Wen Zhang, Wei Zhang, Qiang Chen, and Huajun Chen. “Meta Relational Learning for Few-Shot Link Prediction in Knowledge Graphs”. In: EMNLP-IJCNLP. 2019, pp. 4208–4217.
[7] Jinheon Baek, Dong Bok Lee, and Sung Ju Hwang. “Learning to extrapolate knowledge: Transductive few-shot out-of-graph link prediction”. In: NeurIPS (2020).
[8] Kexin Huang and Marinka Zitnik. “Graph meta learning via local subgraphs”. In: NeurIPS (2020)
[9] Ning Wang, Minnan Luo, Kaize Ding, Lingling Zhang, Jundong Li, and Qinghua Zheng. “Graph Fewshot Learning with Attribute Matching”. In: CIKM. 2020, pp. 1545–1554.
[10] Jatin Chauhan, Deepak Nathani, and Manohar Kaul. “Few-Shot Learning on Graphs via Super-Classes based on Graph Spectral Measures”. In: ICLR (2020)
[11] Davide Buffelli and Fabio Vandin. “A Meta-Learning Approach for Graph Representation Learning in Multi-Task Settings”. In: arXiv preprint arXiv:2012.06755 (2020).
复杂科学最新论文






