导语


随着网络数据快速积累、网络思维深入人心,越来越多的科学研究、行业实践都开始从网络视角解决问题。网络科学是以复杂网络为研究对象的多学科交叉领域。而理解网络上的动力学机制,是实现对复杂网络预测和控制的基础,也是网络科学研究和应用的关键。

 
集智学园特邀陈关荣、项林英、樊瑛、宣琦、李翔、史定华、李聪、荣智海、周进、王琳等网络科学专家作为导师,依托汪小帆、李翔、陈关荣的经典教材《网络科学导论》,自2月27日起开展系列上线课程,以网络动力学为主线构建网络科学知识体系。欢迎希望进入网络科学领域、提高网络分析能力、与一线专家探讨问题的朋友报名参加!
 
5月29日(周六)晚 7 点 30 分,电子科技大学教授荣智海教授将为我们讲解网络博弈相关内容,欢迎对这一主题感兴趣的朋友,扫码预约。
 



分享简介




在疫情和地震等灾难来临之际,人们紧密团结,共度难关。工蚁和工蜂放弃繁殖能力,分工协作,照顾同伴。合作行为在自然界和社会系统中随处可见,2005 年 Science 将“合作如何演化”列为需要解决的 25 个最重要科学问题之一。合作行为如何从理性个体间涌现出来?在网络系统中,如何学习周围邻居信息,帮助个体做出决策?网络的异质性、度相关性、聚类等重要结构特性又是如何影响合作演化的?动态网络中,个体如何择邻而居,网络结构又是如何演化的?


本次课程主要讲授教材第十章,内容包括:

基于经典的两人囚徒困境和雪堆博弈模型,介绍网络互惠中重要的策略演化规则,探讨规则、小世界和无标度等经典网络上的合作演化过程,揭示结构特征对策略演化的作用机理,介绍个体策略与网络结构之间的相互作用机理。

 



5月29日直播信息




直播时间:
5月29日(周六) 19:30-21:30
 
直播方式:
  • 本次课程将在集智学园 B 站免费直播

  • 付费学员在腾讯会议上课,可提问交流


扫码预约:


扫描二维码,点击“我要听”预约,内附 B 站直播地址。(也可以在文末点击阅读全文报名)


 

主讲人:荣智海

电子科技大学教授/博士生导师,IEEE和Sigma Xi会员,中国自动化学会高级会员。长期从事复杂网络及演化博弈动力学领域研究,在中国科学、Phys. Rev. E、New J. of Phys.、Automatica、IEEE Tran. on Cybernetics、Chaos、Sci. Rep.等国内外期刊发表50余篇SCI论文 (2篇入选ESI高被引论文)。2013年入选香江学者计划,获2015年度国家自然科学二等奖 (排名第四),2018年入选四川省学术和技术带头人后备人选,获2018年度英国物理学会出版社 (Institute of Physics,IOP) 评选的中国高被引作者奖。受邀担任“复杂网络与复杂系统专业委员会”委员和IEEE电路与系统学会“非线性电路与系统”技术委员会委员。

个人主页:
https://www.scse.uestc.edu.cn/info/1083/7388.htm


本文分享参考文献与书籍


Güth, Werner, Rolf Schmittberger, and Bernd Schwarze. “An experimental analysis of ultimatum bargaining.” Journal of economic behavior & organization 3.4 (1982): 367-388.
https://www.sciencedirect.com/science/article/abs/pii/0167268182900117
Paciotti, Brian, et al. “Grass-roots justice in Tanzania: cultural evolution and game theory help to explain how a history of cooperation influences the success of social organizations.” American Scientist 93.1 (2005): 58-65.
https://www.jstor.org/stable/27858515
Sigmund, Karl, Ernst Fehr, and Martin A. Nowak. “The economics of fair play.” Scientific American 286.1 (2002): 82-87.
https://www.jstor.org/stable/26059525
Boyd, Robert, and Sarah Mathew. “A narrow road to cooperation.” Science 316.5833 (2007): 1858-1859.
https://science.sciencemag.org/content/316/5833/1858.summary
Nowak, Martin A. “Why we help.” Scientific american 307.1 (2012): 34-39.
https://www.jstor.org/stable/26015995
Vaidya, Nilesh, et al. “Spontaneous network formation among cooperative RNA replicators.” Nature 491.7422 (2012): 72-77.
https://www.nature.com/articles/nature11549
Rapoport, Anatol. “Cycle distributions in random nets.” The bulletin of mathematical biophysics 10.3 (1948): 145-157.
https://link.springer.com/article/10.1007%2FBF02477489
Solomonoff, Ray, et al. “Connectivity of random nets.” The structure and dynamics of networks. Princeton University Press, 2011. 27-37.
https://www.degruyter.com/document/doi/10.1515/9781400841356.27/html
Rapoport, Anatol. “Contribution to the theory of random and biased nets.” The bulletin of mathematical biophysics 19.4 (1957): 257-277.
https://link.springer.com/article/10.1007%2FBF02478417
Erdos, P. and Renyi, A., On random graphs, Publicationes Mathematicae (1959).
https://snap.stanford.edu/class/cs224w-readings/erdos59random.pdf
Erdos, Paul, and Alfréd Rényi. “On the evolution of random graphs.” Publ. Math. Inst. Hung. Acad. Sci 5.1 (1960): 17-60.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.348.530&rep=rep1&type=pdf
Milinski, Manfred. “Tit for tat in sticklebacks and the evolution of cooperation.” nature 325.6103 (1987): 433-435.
https://www.nature.com/articles/325433a0
Axelrod, Robert, and William D. Hamilton. “The evolution of cooperation.” science 211.4489 (1981): 1390-1396.
https://science.sciencemag.org/content/211/4489/1390.abstract
May, Robert M. “More evolution of cooperation.” Nature 327.6117 (1987): 15-17.
https://www.nature.com/articles/327015a0
Molander, Per. “The optimal level of generosity in a selfish, uncertain environment.” Journal of Conflict Resolution 29.4 (1985): 611-618.
https://journals.sagepub.com/doi/abs/10.1177/0022002785029004004
Nowak, Martin, and Karl Sigmund. “A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner’s Dilemma game.” Nature 364.6432 (1993): 56-58.
https://www.nature.com/articles/364056a0
Smith, J. Maynard, and George R. Price. “The logic of animal conflict.” Nature 246.5427 (1973): 15-18.
https://www.nature.com/articles/246015a0
Taylor, Peter D., and Troy Day. “Cooperate with thy neighbour?.” Nature 428.6983 (2004): 611-612.
https://www.nature.com/articles/428611a
Nowak, Martin A. “Five rules for the evolution of cooperation.” science 314.5805 (2006): 1560-1563.
https://science.sciencemag.org/content/314/5805/1560.abstract
Nowak, Martin A., and Robert M. May. “Evolutionary games and spatial chaos.” Nature 359.6398 (1992): 826-829.
https://www.nature.com/articles/359826a0
Szabó, György, Jeromos Vukov, and Attila Szolnoki. “Phase diagrams for an evolutionary prisoner’s dilemma game on two-dimensional lattices.” Physical Review E 72.4 (2005): 047107.
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.72.047107
Szabó, György, and Gabor Fath. “Evolutionary games on graphs.” Physics reports 446.4-6 (2007): 97-216.
https://www.sciencedirect.com/science/article/abs/pii/S0370157307001810
Hauert, Christoph, and Michael Doebeli. “Spatial structure often inhibits the evolution of cooperation in the snowdrift game.” Nature 428.6983 (2004): 643-646.
https://www.nature.com/articles/nature02360
Apicella, Coren L., et al. “Social networks and cooperation in hunter-gatherers.” Nature 481.7382 (2012): 497-501.
https://www.nature.com/articles/nature10736
Hauert, Christoph, and György Szabó. “Game theory and physics.” American Journal of Physics 73.5 (2005): 405-414.
https://aapt.scitation.org/doi/abs/10.1119/1.1848514
Santos, Francisco C., and Jorge M. Pacheco. “Scale-free networks provide a unifying framework for the emergence of cooperation.” Physical review letters 95.9 (2005): 098104.
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.098104
Doebeli, Michael, and Christoph Hauert. “Models of cooperation based on the Prisoner’s Dilemma and the Snowdrift game.” Ecology letters 8.7 (2005): 748-766.
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1461-0248.2005.00773.x
Szabó, György, and Gabor Fath. “Evolutionary games on graphs.” Physics reports 446.4-6 (2007): 97-216.
https://www.sciencedirect.com/science/article/abs/pii/S0370157307001810
Santos, Francisco C., and Jorge M. Pacheco. “A new route to the evolution of cooperation.” Journal of evolutionary biology 19.3 (2006): 726-733.
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1420-9101.2005.01063.x
Gómez-Gardenes, Jesús, et al. “Dynamical organization of cooperation in complex topologies.” Physical Review Letters 98.10 (2007): 108103.
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.108103
Newman, Mark. “The physics of networks.” (2008).
https://people.cas.uab.edu/~xujingw/The%20physics%20of%20networks.pdf
Boccaletti, Stefano, et al. “Complex networks: Structure and dynamics.” Physics reports 424.4-5 (2006): 175-308.
https://www.sciencedirect.com/science/article/abs/pii/S037015730500462X
Xulvi-Brunet, Ramon, and Igor M. Sokolov. “Reshuffling scale-free networks: From random to assortative.” Physical Review E 70.6 (2004): 066102.
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.70.066102
Rong, Zhihai, Xiang Li, and Xiaofan Wang. “Roles of mixing patterns in cooperation on a scale-free networked game.” Physical Review E 76.2 (2007): 027101.
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.76.027101
Maslov, Sergei, and Kim Sneppen. “Specificity and stability in topology of protein networks.” Science 296.5569 (2002): 910-913.
https://science.sciencemag.org/content/296/5569/910.abstract
Holme, Petter, and Beom Jun Kim. “Growing scale-free networks with tunable clustering.” Physical review E 65.2 (2002): 026107.
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.65.026107
Assenza, Salvatore, Jesús Gómez-Gardeñes, and Vito Latora. “Enhancement of cooperation in highly clustered scale-free networks.” Physical Review E 78.1 (2008): 017101.
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.78.017101
Rong, Zhihai, et al. “Heterogeneous cooperative leadership structure emerging from random regular graphs.” Chaos: An Interdisciplinary Journal of Nonlinear Science 29.10 (2019): 103103.
https://aip.scitation.org/doi/abs/10.1063/1.5120349
Zimmermann, Martín G., Víctor M. Eguíluz, and Maxi San Miguel. “Coevolution of dynamical states and interactions in dynamic networks.” Physical Review E 69.6 (2004): 065102.
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.69.065102
Ohtsuki, Hisashi, et al. “A simple rule for the evolution of cooperation on graphs and social networks.” Nature 441.7092 (2006): 502-505.
https://www.nature.com/articles/nature04605
Allen, Benjamin, et al. “Evolutionary dynamics on any population structure.” Nature 544.7649 (2017): 227-230.
https://www.nature.com/articles/nature21723?sf67591313=1
Buyalskaya, Anastasia, Marcos Gallo, and Colin F. Camerer. “The golden age of social science.” Proceedings of the National Academy of Sciences 118.5 (2021).
https://www.pnas.org/content/118/5/e2002923118.short
Rahwan, Iyad, et al. “Machine behaviour.” Nature 568.7753 (2019): 477-486.
https://www.nature.com/articles/s41586-019-1138-y?_hsenc=p2ANqtz–lRCtofDpjC9xefSHwgX-1wh5xTGoBYy-A7yZ1G2CP25l76yByyqcaOmnwF941cIvJTbYVHezHzQXJASWORb6UtLzou7myGSVciGlHtthUAiyPRyw&_hsmi=72127156
VandenBos, Gary R., John D. Hogan, and Anne E. Kazak. “125th anniversary of the American Psychological Association—Accomplishments and challenges: Introduction to the special issue.” American Psychologist 72.8 (2017): 719.

Rapoport, Anatol, Albert M. Chammah, and Carol J. Orwant. Prisoner’s dilemma: A study in conflict and cooperation. Vol. 165. University of Michigan press, 1965.

Morgenstern, Oskar, and John Von Neumann. Theory of games and economic behavior. Princeton university press, 1953.


(参考文献可上下滑动查看)



网络博弈相关经典书籍/论文——荣智海老师推荐
M. A. Nowak, R. M. May. Evolutionary games and spatial chaos. Nature, vol.359, pp.826-829, 1992.
http://www.nature.com/articles/359826a0
C. Hauert, M. Doebeli. Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature, vol.428, pp.643-646, 2004.
https://pubmed.ncbi.nlm.nih.gov/15074318/
G. Szabó, G. Fáth. Evolutionary games on graphs. Phys. Rep., vol.446, 97–216,
2007.
https://www.sciencedirect.com/science/article/abs/pii/S0370157307001810
F. C. Santos, M. D. Santos, J. M. Pacheco. Social diversity promotes the emergence of cooperation in public goods games. Nature, vol.454, pp.213-217, 2008.
http://www.nature.com/articles/nature06940
D. G. Rand, S. Arbesman, N. A.Christakis. Dynamic social networks promote cooperation in experiments with humans. Proc. Natl. Acad. Sci. USA, vol.108, pp.19193-19198, 2011.
https://www.pnas.org/content/108/48/19193/
M. A. Nowak, R. Highfield. Super Cooperators: Altruism, Evolution, and Why We Need Each Other to Succeed. Free Press, 2012 (马丁·诺瓦克/罗杰·海菲尔德著, 龙志勇/魏薇译. 超级合作者. 浙江人民出版社, 2013) (该书可以作为本次课的科普书籍)


扫码报名,参与直播
↓↓↓


网络科学集智课堂第二期报名中,

探索网络动力学


网络科学经过二十年蓬勃发展后,将进入了下一个关键的十年。在新的发展阶段,网络科学迫切需要更多数理人才的加入,为定量化地描述复杂系统的结构和动力学做出跨学科的努力。相信随着更多数学理论和工具的引入,网络科学必将能对更多的现象进行更贴合实际的建模和分析,预期会收获更丰盛的成果。
 
集智学园在 2021 年 2 月推出了网络科学集智课堂第二期,本期课程以《网络科学导论》教材为框架,邀请了陈关荣、项林英、樊瑛、宣琦、李翔、史定华、李聪、荣智海、周进、王琳十位网络科学专家作为导师,以网络动力学为核心,联系其与网络结构与功能的关系。从一个更加动态的视角看待和研究网络问题。
 
同时,我们会给学员充分发挥聪明才智、展示个人魅力并赢取奖学金的机会。鼓励学员申请领读书中的章节和相关论文,引领大家进行更深入细化的学习。
 
“集智课堂”的主旨就是集大家之智,涌个体之现,让每个参与者,从学员到教授都可以从这个课堂上受益。如果你对网络科学感兴趣,需要学习网络科学相关知识和技能,欢迎你加入我们!
 

课程目的

本课程可以帮助你:
1. 初步构建较为完善的网络科学知识体系,为你的知识框架增加新的思维和分析工具;
2. 了解网络动力学的基础与前沿研究;
3. 有意识地打造你自己的思维框架,梳理问题,提炼模型;
 
我们希望你
1. 对网络科学、交叉学科研究感兴趣,不止于科普
2. 具有一定的抽象思维能力与编程基础
3. 具备一定的科研经验和科研能力
 
报名(长期有效):


第一步:扫码付费

第二步:在课程详情页面,填写“学员登记表”

第三步:扫码添加助教微信,入群

本课程可开发票。
 
详情请点击:
2021重磅新课:探索网络动力学——网络科学第二期
 

推荐阅读


往期回顾


‍‍‍‍‍https://campus.swarma.org/course/2336


https://campus.swarma.org/course/2333



点击“阅读原文”,报名直播~