-
Muñoz, M. A. Colloquium: Criticality and dynamical scaling in living systems. Rev. Mod. Phys. 90, 031001 (2018).
-
Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).
-
Gollub, J. P. & Langer, J. S. Pattern formation in nonequilibrium physics. Rev. Mod. Phys. 71, S396–S403 (1999).
-
Cross, M. & Greenside, H. Pattern Formation and Dynamics in Nonequilibrium Systems 1st edn (Cambridge Univ. Press, 2009).
-
Desai, R. C. & Kapral, R. Dynamics of Self-Organized and Self-Assembled Structures (Cambridge Univ. Press, 2009).
-
Halatek, J. & Frey, E. Rethinking pattern formation in reaction–diffusion systems. Nat. Phys. 14, 507–514 (2018).
-
Acebrón, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F. & Spigler, R. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005).
-
Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008).
-
Cavagna, A., Giardina, I. & Grigera, T. S. The physics of flocking: correlation as a compass from experiments to theory. Phys. Rep. 728, 1–62 (2018).
-
Rahmani, P., Peruani, F. & Romanczuk, P. Topological flocking models in spatially heterogeneous environments. Commun. Phys. 4, 206 (2021).
-
Christensen, K. & Moloney, N. R. Complexity and Criticality (World Scientific, 2005). 12. Araújo, N., Grassberger, P., Kahng, B., Schrenk, K. & Ziff, R. Recent advances and open challenges in percolation. Eur. Phys. J. Spec. Top. 223, 2307–2321 (2014).
-
Korchinski, D. J., Orlandi, J. G., Son, S.-W. & Davidsen, J. Criticality in spreading processes without timescale separation and the critical brain hypothesis. Phys. Rev. X 11, 021059 (2021).
-
Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987).
-
Jensen, H. J. Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems (Cambridge Univ. Press, 1998).
-
Dickman, R., Munoz, M. A., Vespignani, A. & Zapperi, S. Paths to self-organized criticality. Braz. J. Phys. 30, 27–41 (2000).
-
Aschwanden, M. Self-Organized Criticality in Astrophysics: The Statistics of Nonlinear Processes in the Universe (Springer, 2011).
-
Pruessner, G. Self-Organised Criticality: Theory, Models and Characterisation (Cambridge Univ. Press, 2012).
-
Hesse, J. & Gross, T. Self-organized criticality as a fundamental property of neural systems. Front. Syst. Neurosci. 8, 166 (2014).
-
Zeraati, R., Priesemann, V. & Levina, A. Self-organization toward criticality by synaptic plasticity. Front. Phys. 9, 619661 (2021).
-
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).
-
Stumpf, M. P. H., Wiuf, C. & May, R. M. Subnets of scale-free networks are not scale-free: sampling properties of networks. Proc. Natl Acad. Sci. USA 102, 4221–4224 (2005).
-
Serafino, M. et al. True scale-free networks hidden by finite size effects. Proc. Natl Acad. Sci. USA 118, e2013825118 (2021).
-
Morstatter, F., Pfeffer, J., Liu, H. & Carley, K. M. Is the sample good enough? Comparing data from Twitter’s Streaming API with Twitter’s Firehose. Proc. Int. AAAI Conf. Weblogs Soc. Media 7, 400–408 (2013).
-
Priesemann, V., Munk, M. H. & Wibral, M. Subsampling effects in neuronal avalanche distributions recorded in vivo. BMC Neurosci. 10, 40 (2009).
-
Magni, A., Durin, G., Zapperi, S. & Sethna, J. P. Visualization of avalanches in magnetic thin films: temporal processing. J. Stat. Mech. Theory Exp. 2009, P01020 (2009). 27. Chen, Y.-J., Papanikolaou, S., Sethna, J. P., Zapperi, S. & Durin, G. Avalanche spatial structure and multivariable scaling functions: sizes, heights, widths, and views through windows. Phys. Rev. E 84, 061103 (2011).
-
Zierenberg, J., Wilting, J., Priesemann, V. & Levina, A. Description of spreading dynamics by microscopic network models and macroscopic branching processes can differ due to coalescence. Phys. Rev. E 101, 022301 (2020).