[1] M. M. Churchland, M. Y. Byron, J. P. Cunningham, L. P. Sugrue, M. R. Cohen, G. S. Corrado, W. T. Newsome, A. M. Clark, P. Hosseini, B. B. Scott et al., “Stimulus onset quenches neural variability: A widespread cortical phenomenon,” Nat. Neurosci. 13, 369–378 (2010). https://doi.org/10.1038/nn.2501
[2] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, Computational Neuroscience Series (MIT Press, 2001).
[3] G. Collell and J. Fauquet, “Brain activity and cognition: A connection from thermodynamics and information theory,” Front. Psychol. 6, 818 (2015). https://doi.org/10.3389/fpsyg.2015.00818
[4] R. Schwarz and A. Khachaturyan, “Thermodynamics of open two-phase systems with coherent interfaces,” Phys. Rev. Lett. 74, 2523 (1995). https://doi.org/10.1103/PhysRevLett.74.25235.
[5] E. Kuhl and P. Steinmann, “Mass- and volume-specific views on thermodynamics for open systems,” Proc. R. Soc. London, Ser. A. 459, 2547–2568 (2003). https://doi.org/10.1098/rspa.2003.11196.
[6] P. Talkner and P. Hänggi, “Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical,” Rev. Mod. Phys. 92, 1537 (2020). https://doi.org/10.1103/RevModPhys.92.041002
[7] M. Campisi, P. Talkner, and P. Hänggi, “Thermodynamics and fluctuation theorems for a strongly coupled open quantum system: An exactly solvable case,” J. Phys. A: Math. Theor. 42, 392002 (2009). https://doi.org/10.1088/1751-8113/42/39/392002
[8] K. Brandner and U. Seifert, “Periodic thermodynamics of open quantum systems,” Phys. Rev. E 93, 062134 (2016). https://doi.org/10.1103/PhysRevE.93.062134
[9] A. Katchalsky and O. Kedem, “Thermodynamics of flow processes in biological systems,” Biophys. J. 2, 53 (1962). https://doi.org/10.1016/S0006-3495(62)86948-3[10] H. Qian and T. C. Reluga, “Nonequilibrium thermodynamics and nonlinear kinetics in a cellular signaling switch,” Phys. Rev. Lett. 94, 116 (2005). https://doi.org/10.1103/PhysRevLett.94.028101
[11] D. T. Haynie, Biological Thermodynamics (Cambridge University Press, 2001).
[12] L. Szilard, “Über die entropieverminderung in einem thermodynamischen system bei eingriffen intelligenter wesen,” Z. Phys. 53, 840–856 (1929)
[13] R. Landauer et al., “Information is physical,” Phys. Today 44, 23–29 (1991). https://doi.org/10.1063/1.88129933.
[14] R. Landauer, “The physical nature of information,” Phys. Lett. A 217, 188–193 (1996). https://doi.org/10.1016/0375-9601(96)00453-7
[15] H. S. Leff and A. F. Rex, Maxwell’s Demon: Entropy, Information, Computing (Princeton University Press, 2014)
[16] 60. G. Diana, G. B. Bagci, and M. Esposito, “Finite-time erasing of information stored in fermionic bits,” Phys. Rev. E 87, 012111 (2013). https://doi.org/10.1103/PhysRevE.87.012111
[17] D. Mandal, H. Quan, and C. Jarzynski, “Maxwell’s refrigerator: An exactly solvable model,” Phys. Rev. Lett. 111, 030602 (2013). https://doi.org/10.1103/PhysRevLett.111.030602
[18]. D. Mandal and C. Jarzynski, “Work and information processing in a solvable model of Maxwell’s demon,” Proc. Natl. Acad. Sci. 109, 11641–11645 (2012). https://doi.org/10.1073/pnas.1204263109
[19]. Z. Lu, D. Mandal, and C. Jarzynski, “Engineering Maxwell’s demon,” Phys. Today 67, 60–61 (2014). https://doi.org/10.1063/PT.3.2490
[20] A. Chapman and A. Miyake, “How an autonomous quantum Maxwell demon can harness correlated information,” Phys. Rev. E 92, 062125 (2015). https://doi.org/10.1103/PhysRevE.92.062125
[21] T. Hylton, T. M. Conte, and M. D. Hill, “A vision to compute like nature: Thermodynamically,” Commun. ACM 64, 35–38 (2021). https://doi.org/10.1145/3431282