Nat. Commun.速递:个体中心沟通网络中的普遍模式
关键词:社交网络,自我中心网络,强弱联系,社交痕迹,累积优势机制
论文题目:Universal patterns in egocentric communication networks 论文来源:Nature Communications 原文链接:https://www.nature.com/articles/s41467-023-40888-5
图1. 连接强度是异质的并受累积优势驱动。图a显示了一个选定的egos(个体)与其k个熟人之间的实时联系序列(左),和对应的通信活动的时间轴(右)。该序列被分为两个连续的时间段,事件数量相同(I1和I2)。随着时间的推移,一些熟人之间的交流比其他人更频繁。图b显示了图a所示表示的聚合的自我egos网络(左),和熟人活动分布(右侧)。a(0), t, σ分别表示该活动中的最小活跃水平,活跃次数平均值和标准差。图c展示了在将个体依据离散度进行四分类的条件下,至少具有活动水平a的熟人数量的互补累积分布函数 (CCDF)。对于较大的离散度d,egos与熟人之间的交流是异质的。图d显示了图c中数据的离散度分布p(d),显示了更多的异质egos。图e展示了在图d中每个离散度分布p(d)范围内,在活动a中熟人被连接的相对概率 π(a )-〈1/k〉,在个体和时间上做平均后的值。图中random choice的基线表示的是熟人被根据 π(a )=〈1/k〉随机连接时的情况。对于异质的egos,增加的趋势表明了累积优势,即具有较高先前活动的熟人接收到更多事件。图f展示了在16个通信渠道中,至少具有离散度d的egos数量的互补累积分布函数(CCDF)。图g展示了所有数据集中的相对连接核 π(a)-〈1/k〉。在所有渠道中,增长趋势表明累积优势的存在。
图2. 改变活动的简单模型显示社交痕迹形状的交叉。图a展示了在一个度为k的模拟自我egos网络中,研究者考虑了熟人的活动水平以及它们在特定事件时间τ参与新的通信事件的概率π(a)。其中,熟人的当前活动水平为a,参数α用于插值累积优势(α→-a0,顶部)和随机选择(α→∞,底部)之间的行为。这些动态导致了一个自我网络,其中熟人的平均活动水平(即时间)为t = τ/k。右侧的图表和网络以示意图的形式展示,但对应于k = 5,a0 = 1,α = -0.9(103),以及顶部(底部)的t = 3(103)。图b展示了熟人在时间t时具有活动水平a的概率p(a),在不同的t值下的变化,其中α在顶部(底部)为-0.7(9),k = 100,a0 = 1。数值模拟与理论计算非常吻合,表明累积优势和随机选择分别导致广泛或狭窄的活动分布。图c展示了重新调整参数αr= α + a0和tr= t – a0后,给出的活动离散度d的相图。偏好性参数β = t(r)/α(r)在β = 1(虚线)处展示了异质和均匀区域之间的交叉点。垂直的灰色虚点线是图d的参数值。图d展示了在不同的t值和α(r)= 0.3(上)和α(r)=10(3)(下)的情况下重新调整的活动分布p(a)。异质区域在p(a)中展示了伽玛尺度,均匀区域展示了高斯尺度。所有的模拟结果都是对10(4)次实现的平均值。
图3. 模型揭示社交痕迹的多样性和持久性。图a展示了在Mobile (call)数据集中,根据α(r) = α + a(0)和t(r )= t – a(0)的不同取值,展示了egos数量N(α,t)的热图。大多数egos(95%)具有异质的社交特征。在交叉点β = 1的另一侧,少数egos(5%)具有更均匀的联系强度。图b展示了在a部分数据集中的所有egos,根据在异质(β > 1)或均匀(β < 1)区域中至少具有活动水平a的熟人数量的CCDF(补余累积分布函数)。图c展示了在16个通话、短信和在线交互数据集中,估计出的1/β的CCDF。所有的系统都显示出多样化的社交特征,66-99%的egos倾向于与少数熟人进行交流,而1-34%的egos则表现出均匀的交流模式。图d展示了,当在两个连续的活动区间(I1和I2)中计算β时,具有给定熟人流动率J和相对优先性变化Δβ/β的egos数量N(J,Δβ)。这些计算基于egos进行,显示了熟人流动率和相对优先性变化的边际数值分布。这表示无论熟人的流动性如何,社交特征在个体层面上都是持久的。图e展示了所有研究数据集中相对优先性变化p(Δβ)的分布。社交特征的持久性在不同的通信渠道中是系统性的。
计算社会科学读书会第二季
详情请见:
推荐阅读